日期:2023-03-02 09:06:56人气:10
大家好,小帝来为大家解答以上问题。取整函数的使用方法,取整函数这个很多人还不知道,现在让我们一起来看看吧!
1、f(x) = 2^x / (1 + 2^x) - 0.5= 0.5 - 1/(1 + 2^x)2^x > 00 < 1/(1 + 2^x) < 1-0.5 < f(x) < 0.5同理-0.5 < f(-x) < 0.5当 f(x) < 0<=> 0.5 - 1/(1 + 2^x) < 0=> x < 0=> 0.5 - 1/(1 + 2^(-x)) > 0<=> f(-x) > 0=> [f(x)] + [f(-x)] = -1 + 0 = -1当 f(x) ≥ 0<=> 0.5 - 1/(1 + 2^x) ≥ 0=> x ≥ 0=> 0.5 - 1/(1 + 2^(-x)) ≤ 0<=> f(-x) ≤ 0=> [f(x)] + [f(-x)] = 0 - 1 = -1所以 y = [f(x)] + [f(-x)] ∈ {-1}。
以上就是【取整函数的使用方法,取整函数】相关内容。
声明: 本站所有文章来自互联网搜索结果, 如果侵犯到你的权益 请提供版权证明来信告知,我们会在3个工作日之内删除 本站为非赢利性网站 不接受任何赞助和广告
Copyright 2005-2022 baike.pingguodj.com 酷帝达百科 客服邮箱:s2s2s2-s@outlook.com