日期:2023-02-22 09:13:39人气:5
大家好,小帝来为大家解答以上问题。高中对数函数经典例题,高中对数函数公式大全这个很多人还不知道,现在让我们一起来看看吧!
1、当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b (8)由幂的对数的运算性质可得(推导公式) log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M , log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M log(a)b×log(b)c×log(c)a=1 对数与指数之间的关系 当a>0且a≠1时。
2、a^x=N x=㏒(a)N。
以上就是【高中对数函数经典例题,高中对数函数公式大全】相关内容。
声明: 本站所有文章来自互联网搜索结果, 如果侵犯到你的权益 请提供版权证明来信告知,我们会在3个工作日之内删除 本站为非赢利性网站 不接受任何赞助和广告
Copyright 2005-2022 baike.pingguodj.com 酷帝达百科 客服邮箱:s2s2s2-s@outlook.com